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Friends, on behalf of the United Sta-
tes Aerospace Experimental Psy-
chology Society (USNAEPS) Exe-

cutive Committee (EXCOM), welcome 
to another issue of Call Signs. This issue 
focuses on research questions, ongoing 
programs, and applied work in the area 
of Human-Machine Teaming. This area 
of practice is aligned with our AEP mis-
sion areas, and is more important than 
ever with the increased prevalence of 
unmanned and autonomous systems 
across warfare domains. 

I am delighted to report the ongoing 
success of the USNAEPS-driven recrui-
ting efforts championed by Vice-Presi-
dent LT Eric Vorm and our Recruitment 
Team Coordinator (RTC), LT Aditya Pra-
sad. Since our last issue, the recruitment 
team has developed 3 promotional vi-
deos and 3 static photo advertisements, 
all promoted on multiple social media 
platforms, significantly improving visibi-
lity for the AEP community among pros-
pective AEPs and graduate students, as 
well as driving traffic to the navyaep.
com website. Our RTC has established 
contact with four new downstream con-
tacts as of this writing, in addition to 
the 10 active prospects our LCDR Lee 
Sciarini, our Assistant Specialty Leader 
(ASL), is maintaining contact with. We 
have also been invited to provide up-
dates to a navy.com AEP community 
brochure being produced by Navy Re-
cruiting Command. ASL LCDR Sciarini 
has also challenged members of the AEP 
community to visit their alma maters to 
build awareness of AEP employment 
opportunities and offer job talks about 
the exciting work we do. 

One of the USNAEPS videos has already 
been featured on the USN Medical Ser-
vice Corps Facebook page, and poten-
tially most important of all, other MSC 
community members are telling me they 
are jealous of the videos and recruit-
ment products the team is producing. 
This initiative is really achieving the best 
of both worlds for the AEPs.

If you haven’t seen it lately, please be 
sure to visit our website at www.nav-
yaep.com. It has received a significant 
overhaul to better reflect its alignment 
with our recruiting goals. You can find 

expanded information about the natu-
re of the work AEPs do, complete with 
summaries of applied examples, and the 
opportunity to learn more about indivi-
dual AEPs, including their backgrounds, 
interests, and applied work.  The site 
also includes critical information about 
AEP billet locations, eligibility require-
ments, and an overview of our training 
pipeline.

Finally, because I was honored to ac-
cept appointment as AEP Specialty Lea-
der (SL) in March 2020, I have stepped 
down as USNAEPS President, and am 
proud to welcome CDR Brent Olde as 
the incoming President. The AEP Com-
munity and Society are grateful for the 
leadership he will provide, and for his 
continued championship of the US-
NAEPS recruiting efforts. Thank you, 
Brent, for stepping up!

On behalf of the USNAEPS EXCOM, I 
hope you enjoy this issue of Call Signs. 
Thank you for your continued support of 
the Society!

FROM THE PRESIDENT
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DO YOU TRUST 
YOUR PARACHUTE?
A call to study human-machine teaming in 
uncontrolled environments
Nathan L. Tenhundfeld, Department of Psychology, University of Alabama in Huntsville

Mustafa Demir,  Human Systems Engineering, Arizona State University

HUMAN MACHINE TEAMS

Recent research suggests that jum-
ping out of a plane without a pa-
rachute makes one no more sus-

ceptible to death than jumping out with 
a parachute (Yeh et al., 2018). In this 
first-of-its-kind, randomized, controlled 
study, participants who jumped out of 
the plane with just a backpack were as 
likely to survive the fall (and as likely to 
emerge unscathed) as were those who 
jumped out of the plane with a parachu-
te. However, the authors acknowled-
ge that certain conditions of the study 
were not ecologically valid: namely, the 
plane was parked on the ground at the 
time of the jump. Despite this one de-
tail, everything else in the study was 
ecologically valid and of sound metho-
dology. 

Clearly, the aforementioned parachu-
te study represents an obvious discre-
pancy between the real world and an 
‘ecologically valid’ testing environment. 

U.S. Marine Corps Sgt. Cory Kim, an explosi-
ve ordnance disposal technician with Combat 

Logistics Battalion 11, 11th Marine Expedi-
tionary Unit (MEU), operates an Endeavor 

Robotics First Look Robot during chemical, 
biological, radiological and nuclear respon-

se training at Marine Corps Base Camp 
Pendleton, Calif., Jan. 22, 2020. The Marines 

participated in the exercise to retain the 
skills necessary to safely identify and dispose 

of contaminated, unexploded ordnance. 
(U.S. Marine Corps photo by Cpl. Dalton S. 

Swanbeck)
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and some of the constructs we study, 
as well as the ways we study them, are 
inextricably linked to risk. Trust is one 
of these constructs. To study trust in 
the absence of evaluations of risk is so-
mewhat self-defeating.

The most classically used definition sta-
tes that trust is “…the attitude that an 
agent will help achieve an individual’s 
goal in a situation characterized by un-
certainty and vulnerability” (emphasis 
added; Hoff & Bashir, 2015; Lee & See, 
2004). Trust influences reliance on auto-
mation. In particular, trust guides relian-
ce when complexity and unanticipated 
situations make a complete understan-
ding of the automation impractical. This 
review considers trust from the orga-
nizational, sociological, interpersonal, 
psychological, and neurological pers-
pectives. It considers how the context, 
automation characteristics, and cogniti-
ve processes affect the appropriateness 
of trust. The context in which the auto-
mation is used influences automation 
performance and provides a goal-orien-
ted perspective to assess automation 

characteristics along a dimension of 
attributional abstraction. These cha-
racteristics can influence trust through 
analytic, analogical, and affective pro-
cesses. The challenges of extrapolating 
the concept of trust in people to trust 
in automation are discussed. A concep-
tual model integrates research regarding 
trust in automation and describes the 
dynamics of trust, the role of context, 
and the influence of display characteris-
tics. Actual or potential applications of 
this research include improved designs 
of systems that require people to ma-
nage “imperfect automation.” Beyond 
a subjective self-report, many studies 

However, could a similar claim be made 
in regard to research on human-machi-
ne teaming (HMT)? Take, for example, 
research on human interactions with 
automation. Considerable research has 
been done with self-driving vehicles to 
show the interactions between auto-
mation, situation awareness, trust, and 
human performance (Endsley, 2017; 
Petersen et al., 2019; Young & Stanton, 
2007). However, many of these have 
been inherently reliant on simulators or 
real-world vehicles in highly controlled 
testing environments (Boelhouwer et 
al., 2019; Li et al., 2019; Tenhundfeld, 
de Visser, Ries, et al., 2019; Walch et 
al., 2015) the system has to de-escala-
te (e.g. emergency braking). This is not 
to say there is not benefit for simulator 
and highly controlled studies, as there 
absolutely is, including easier Interna-
tional Review Board approval, greater 
experimental control, and facilitation of 
theory development. 

In HMT, one solution to achieve the 
aforementioned is to insert a simple 
and task specific research framework. 
The living lab (LL) framework is a holis-
tic, cognitively based research approach 
that attempts to understand psycholo-
gical and sociological aspects (e.g., cog-
nition, teamwork, situation awareness, 
transparency) in context, further un-
derstand it in the lab, and then develop 
technologies to improve performance in 
real-world contexts (McNeese, 1996). 
LL focuses on transactions between 
team members and their environments. 
In order to understand these transac-
tions ecologically, the LL framework 
combines ethnographic observations 
of teams within their task environments 
with unique knowledge from each team 
member’s perspective (McNeese et 
al., 2017). The LL framework focuses 
on the following outcomes (McNeese, 
Perusich, and Rentsch 2000; Hall et al. 
2008): (1) ethnographic studies, which 
focus on understanding the issues re-
lated to a particular domain or applica-
tion; (2) cognitive systems engineering 
in which knowledge elicitation methods 
are used to understand the problem do-
main; (3) scaled world simulations whe-
rein researchers can create a high level 
fidelity environment to evaluate the 
evolving concepts, scenarios, and test 
sets; and (4) design of support tools that 
are developed based on the results of 
scaled world simulations (McNeese et 
al., 2017). However, the LL framework 

U.S. Marines with Combat Logistics Battalion 
11, 11th Marine Expeditionary Unit (MEU), 
operate an Endeavor Robotics First Look 
Robot during chemical, biological, radiologi-
cal and nuclear response training at Marine 
Corps Base Camp Pendleton, Calif., Jan. 22, 
2020. The Marines participated in the exerci-
se to retain the skills necessary to safely iden-
tify and dispose of contaminated, unexploded 
ordnance. (U.S. Marine Corps photo by Cpl. 
Dalton S. Swanbeck)
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have sought to examine levels of trust 
through behavioral measures (Banks et 
al., 2018; Muir & Moray, 1996; Tenhun-
dfeld, de Visser, Haring, et al., 2019; Ten-
hundfeld, de Visser, Ries, et al., 2019). 

Because one of the largest influences 
on trust in automation is the familiarity 
with the system, we sought to examine 
the effects of familiarity on driver inter-
ventions while using the autoparking 
feature of a Tesla Model X. Participants 
were either told or shown how the auto-
parking feature worked. Results showed 
a significantly higher initial driver inter-
vention rate when the participants were 
only told how to employ the autopar-
king feature, than when shown. Howe-
ver, the intervention rate quickly leveled 
off, and differences between conditions 
disappeared. Even for those who belie-
ve that trust can exist independent of 
some appraisal of risk, it seems difficult 
to argue that measures of changes in 
behavior (such as driver interventions in 
a self-driving vehicle) are not suscepti-
ble to changes in the driver’s perception 
of risk (Ghazizadeh et al., 2012; Hoff & 
Bashir, 2015; Lee & See, 2004). Trust 
influences reliance on automation. In 
particular, trust guides reliance when 
complexity and unanticipated situations 
make a complete understanding of the 
automation impractical. This review 
considers trust from the organizational, 
sociological, interpersonal, psycholo-
gical, and neurological perspectives. It 
considers how the context, automation 
characteristics, and cognitive processes 
affect the appropriateness of trust. The 
context in which the automation is used 
influences automation performance and 
provides a goal-oriented perspective to 
assess automation characteristics along 
a dimension of attributional abstraction. 
These characteristics can influence trust 
through analytic, analogical, and affec-
tive processes. The challenges of extra-
polating the concept of trust in people 
to trust in automation are discussed. A 
conceptual model integrates research 
regarding trust in automation and des-
cribes the dynamics of trust, the role 
of context, and the influence of display 
characteristics. Actual or potential appli-
cations of this research include impro-
ved designs of systems that require peo-
ple to manage imperfect automation.

Often joint human-automation perfor-
mance depends on the factors influen-
cing the operator’s tendency to rely on 

and comply with automation. 

It is therefore illogical to say that chan-
ges in behavior, independent of direct 
measurements of perceived risk, are 
indicative of changes in level of trust. 
Perhaps I allow Tesla’s “Autopark” fea-
ture to park my vehicle, not because I 
trust it, but because my appraisal of the 
risk has changed over time (Tomzcak et 
al., 2019). This seems particularly likely 
as the use of repeated exposures is an 
effective method of therapeutic reduc-
tion of expected risk in anxiety disorders 
(Craske et al., 2008). Additionally, given 
that individuals perceive risk differently, 
it is also insufficient to simply attempt 
to experimentally control for objective 
risk levels (Sjöberg, 2000). It therefore 
seems somewhat ill-advised to study 
trust in the absence of quantifying the 
user’s perceived risk. 

All of this remains independent of the 
reality that as risk changes, so too does 
an individual’s reliance strategy (Hoff & 
Bashir, 2015). Therefore, understanding 
an individual’s likelihood of relying on a 
system at a fixed level of trust, does not 
help with the extrapolation of their likeli-
hood of use at higher (or lower) levels of 
perceived risk. For those of us interested 
in understanding the warfighter, the abi-
lity to project reliance on a system into 
the most high-risk operational environ-
ments seems of paramount importance. 

As such, this article proposes a 4-tiered 
strategy to address the aforementioned 
concerns. Tier 1 involves no changes to 
the field’s current approach. This will still 
allow the field to understand effects of 
changes in transparency on operator 
use/disuse/misuse, but will prevent the 
field from being able to isolate trust as 
a cognitive construct. Tier 2 involves the 
inclusion of measures of perceived risk 
into pre-existing paradigms. This will 
allow for perceived risk to be an inclu-
ded covariate in analyses in an effort to 
better isolate trust. A Tier-2 approach 
would involve nothing more than the in-
clusion of perception of risk scales (e.g. 
Hulse et al., 2018). 

Next, a Tier-3 approach would involve 
the direct manipulation (and evalua-
tions of users’ perception) of risk within 
a controlled environment. This would 
allow for greater understanding of the 
interactions between trust and risk on 
reliance, as well as changing levels of 
trust in the face of changing levels of 
risk. This approach would still allow for 
the high levels of control necessary to 
advance the theory, and to collect data 
in a timely manner. However, every pre-
caution should be taken to avoid giving 
the illusion of changes in risk, in the 
absence of real changes, as an obvious 
experimental risk, manipulation (with 
or without actual changes in risk) could 

Staff Sgt. David Cain and Sgt. Maximilian Musick lift the tracks of the Mark II Talon explosive 
ordnance disposal robot during charge employment training Aug. 2, 2018 at Camp Hansen, 
Okinawa, Japan. The training taught EOD technicians to effectively neutralize IED threats with 
unmanned robotic platforms by safely finding and removing any hazards. Cain, a native of Fre-
dericksburg, Virginia and Musick, a native of Phoenix, Arizona are EOD technicians with EOD 
Company, 9th Engineer Support Battalion, 3rd Marine Logistics Group. (U.S. Marine Corps 
photo by Pfc. Terry Wong)
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lead to experimental demands influen-
cing participant responses on percep-
tion-of-risk measures (Orne, 1962).
  
Finally, Tier 4 would involve the collec-
tion of data in real-world, operational, 
high-risk environments. While this in-
volves the least control of the four tiers, 
it provides the greatest degree of eco-
logical validity which is ignored in the 
LL framework. What is more, a Tier-4 
approach would help guard against the 
false sense of security associated with 
obvious manipulations of risk which are 
independent of true changes in risk. To 
put it another way, this approach would 
help guard against having a participant 
jump from 10 feet without a parachute 
and extrapolating those results to what 
would happen if one were to jump from 
10,000 feet. While this approach can 
be used, it does not necessitate formal 
data collection by researchers. Instead, 
researchers can seek to leverage exis-

ting data provided publicly, or available 
privately through collaborations with 
government/industry partners. 

For a great example of real world data 
available to all, see the California “Au-
tonomous Vehicle” testing reports (Tes-
ting of Autonomous Vehicles with a Driver, 
n.d.). By looking at the existing data 
from those unfortunate souls whose 
parachute never deployed, we can get a 
fairly good understanding of the impacts 
of jumping without a parachute. Impor-
tantly, a Tier-4 approach does not re-
place the benefits conferred by a lower 
tier approach. In fact, a Tier-4 approach 
would be significantly lacking in suffi-
cient control to advance much of the 
field’s understanding. However, data de-
rived from a Tier-4 approach can be an 
invaluable tool to enhance understan-
ding derived from a ‘lower’ tier approach. 
In conclusion, there may be theoreti-
cal reason to believe that, as a field, 

our approach to studying trust in hu-
man-machine teams, may be insufficient. 
This article has attempted to briefly out-
line the logic behind that idea, and lay 
out a potential tiered structure within 
an LL frame, to address these concerns. 
We need not throw the baby out with 
the bath water. There should be subs-
tantial considerations and discussions in 
regard to the field’s research approaches 
moving forward. This article attempts to 
initiate that dialogue. 
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COMPUTER-CENTERED 
HUMANS
What can the game of chess teach us about the future of 
cooperative synergy between humans and technology?
LT E.S. Vorm, PhD, US Naval Research Laboratory

The dynamics of teamwork have 
been a subject of fascination by 
social scientists for many years. 

Even Aristotle, who is commonly consi-
dered the father of western philosophy, 
devoted study to this curious human 
behavior. He is famously credited with 
developing the definition of synergy: 
“the whole is greater than the sum of its 
parts.” 

He observed that when human beings 
determine to work together, their syner-
gistic effects can produce remarkable 
accomplishments. Ancient examples of 
these feats abound, such as the Great 
Wall of China, which began in 770BC 
and took almost 900 years to complete, 
yet still stands robust and sturdy today. 
 
Scientists have long been interested in 
ways to take what they have observed 
from human teamwork, and create that 
same effect between computers and 
their users. It seems almost every gene-
ration since the introduction of the first 
computer has had a vision for the poten-
tial of human performance to be impro-
ved by computer technology. As early 
as the 1950’s, great scientists like Allen 
Turing were describing a future where 
humans would work symbiotically with 
robot companions, aided in every way by 
intelligent systems [1]. Turing, and many 
others after him, described human-ma-
chine systems that would combine the 
best characteristics of humans, such as 
ingenuity, intuition, and the ability to 
generalize learning with the best cha-
racteristics of computers, such as their 
raw speed, accuracy, and computational 
power. This hybrid system of humans 
and computers working together is the 

central characteristic of the field of in-
quiry known as human-machine teaming 
(HMT).  The vision at the heart of HMT re-
search is the development of technologies 
that can successfully augment human per-
formance so that a superior combination 
of both human and machine should be 
able to outperform either the best human 
or the best machine. It isn’t about machi-
nes replacing humans, or machines wor-
king autonomously. It is about machines 
that join with humans in synergy, each 
side contributing strengths and mitiga-
ting weaknesses.

What can Chess teach us 
about human-machine 
teaming?

A fascinating example of HMT in mo-
dern times is the world of Freestyle 
Chess. Freestyle chess, also known as 
“cyborg chess,” is a style of gameplay 
whereby humans and computers can 
join as teams called Centaurs. Games 
are run using the same turn-based rules 
as regular chess. Humans can leverage 
computers for strategy and analysis, but 
only humans can move the game pieces. 
In this way, computers serve humans in 
a decision support role. Intelligent algo-
rithms analyze the game board, predict 
future moves and strategies, and ad-
vise their human teammates on things 
like what strategies the opponent team 
seems to be using and which move has 
the highest probability of being success-
ful. Interestingly enough, there isn’t a 
limit on how many computers and algo-
rithms a human can use. Human players 
can literally surround themselves with 

laptops in a game if they want, and they 
sometimes do. The reason for this is 
simple: No matter how superior the tool, 
its ultimate usefulness still depends on 
how the craftsman uses it. In the case 
of Freestyle Chess, it often comes down 
to how humans decide to use their com-
puters to gain an advantage. In other 
words, success is determined not by the 
expertise of the human or the proces-
sing power of computers, but primarily 
through the intelligent interaction and 
integration of them together. Perhaps 
the most striking successful example 
of the potential of human-machine tea-
ming is the story of ZachS. 

In 2005, an amateur Centaur team by 
the name of ZachS, made up of a da-
tabase administrator and high school 
soccer coach from New Hampshire, 
entered the competition and procee-
ded to sweep its way all the way to the 
final match. Merely making it to the fi-
nal match of the competition defied all 
odds. ZachS’s rankings predicted that 
they would probably be eliminated in 
the first round of serious competition, 
yet they were able to beat their way to 
the final competition where they won a 
decisive victory against a team of pro-
fessional chess players, including one 
world Grand Champion. 

When ZachS shocked the world with its 
accomplishment, the world once again 
caught a vision of a future where hu-
man and computer intelligence in con-
cert could rule supreme. But what can 
we attribute to the surprising success of 
ZachS? Most scientists agree that what 
ZachS did well was to develop a supe-
rior process, which they used consis-

Cartoons written by LT E.S. Vorm; original artwork by LT Zach Morris, creator of “The Landing Strip” comic

HUMAN-MACHINE TEAMS
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tently throughout the competition. This 
process has since become the principal 
focus of HMT. The goal is to afford the 
right kinds of interactions that enable 
the strengths of both humans and com-
puters to be leveraged in a complemen-
tary fashion in order to produce a su-
perior outcome. The future of defense 
envisions computers that control missi-
les, jam signals, aim lasers, read sensors, 
and aggregate immense amounts of data 
into an intuitive interface that humans 
can read, understand, and use to com-
mand the mission.

Unfortunately, there is more to achie-
ving this vision balance than meets the 
eye. Simply pairing expert humans with 
advanced technologies to accomplish 
some cooperative task seldom results in 
superior performance. In fact, somewhat 
paradoxically, the opposite is often true; 
pairings of expert humans and advanced 
technologies often result in lower ove-
rall performance on cooperative tasks 
that require deliberate communication 
and cooperation [2]-[4]. Where the 
problems occur is also somewhat pa-
radoxical. Contrary to popular opinion, 
problems in team performance between 
humans and advanced technologies are 
seldom the result of technological failu-
res. Instead, these conflicts and subse-
quent failures tend to originate in a far 
more variable and lesser understood 
system— the user’s brain. 

As it turns out, how humans use and re-
act to complex technologies is a delicate 
dance between perception, sense ma-
king, decision making, and acting (with 
sticky ingredients such as trust thrown 
in for extra measure). And while the 
speed of research in the technology of 
artificial intelligence in the DoD is clear-
ly increasing, research in human-AI in-
teraction and human-machine teaming 
does not appear to be keeping pace. 
Issues such as usability, interaction mo-
dalities, visualization knowledge repre-
sentation techniques and others are all 
vital parts of a coherent technology in-
tegration strategy, but these are seldom 
the principal focus of large-scale re-
search projects in the DoD. Instead, lar-
ge-scale research projects tend to focus 
on things like algorithm and software 
development, machine learning model 
advancements, and the various hardwa-
re-based enablers of advanced AI such 
as remote sensing. So, while there are 
significant investments being made to 

build algorithms and hardware, the his-
torical record of past tech booms would 
suggest that unless equal focus is placed 
on user modeling and human-centered 
design, then the dream of super-human 
performance like that of ZachS is unli-
kely to be achieved. 

The need for human-centered 
design in a techno-centered 
landscape

Many past system development efforts 
that have resulted in clumsy, ill-fitting, 
difficult-to-use, or often dangerous sys-
tems can be traced back to strategies 

that relied too heavily on technology 
development and largely ignored the 
user and their needs. Undergraduate 
engineering students often learn of fa-
mous examples where decisions about 
the placement of buttons or the routing 
of electricity forced design decisions 
which put ergonomics in the backseat 
[5]. As future technologies are develo-
ped and tested, it will become increa-
singly important that they be developed 
FOR the user, and not as something the 
user must accept and fit into. Scientists 
working these concerns often discuss 
the concept of human-centered design, 
especially in the context of artificial inte-
lligence, as “cognitive orthoses” [6]. For 
example, eyeglasses, which are a kind of 

An abundance of technology can lead to systems that are ill-fitting, uncomfortable to use, and 
sometimes dangerous. To achieve the synergistic effects envisioned in human-machine tea-
ming, research and development will need to keep the user and their needs as a top priority.
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orthotic for our eyes, need to be fitted 
to our face in order for their benefit to 
be realized. Similarly, AI systems will 
need to be developed in ways that le-
verage and extend human cognition, or 
else risk the equivalent of being stuck 
with someone else’s prescription. 

Another concern over the lack of hu-
man-centered design focus is the fear 
that the ever-expanding scope of tech-
nologies may result in a loss of human 
capabilities (a concern known as de-ski-
lling). Over the past several decades, for 
example, commercial aviation has made 
significant advancements in automation. 
Today’s airplanes are capable of taking 
off, navigating waypoints, lining up on 
approach, and landing— all without any 
direct human intervention. This has led 
to generations of pilots who spend the 
majority of their time interfacing with 
automated systems, and very little time 
actually controlling the aircraft. Dozens 

of studies and surveys, and many unfor-
tunate mishap reports have yielded am-
ple evidence that when the unexpected 
occurs and pilots must resume control of 
the aircraft from their automated coun-
terparts, they are uncomfortable, unfa-
miliar, and in some cases, unsuited to do 
so appropriately (for example, the recent 
737MAX accidents, see [7], [8]). 

De-skilling is not only a concern for com-
mercial aviation. One could even argue 
that the introduction of search engines 
such as Google has fundamentally chan-
ged how scientists conduct research 
also. Today, the speed and ease with 
which a person can access thousands 
of articles from across multiple domains 
has revolutionized how we scientists 
conduct literature reviews, on which we 
base our ideas and plan our research. 
In gaining that speed and ease of use, 
however, many critical research skills, 
one can argue, have been lost. If the 
DoD embraces a strategy that prioritizes 
technology over user-centered develop-
ment in areas such as combat patrolling, 
search and rescue, route planning and 
execution, and reconnaissance, then this 
could similarly lead to future soldiers 

and Marines who are overly dependent 
on these technologies. In circumstances 
where they must do their jobs without 
them (for instance, when the batteries 
go dead, or the networks go down), we 
may find that critical skills such as land 
navigation, systematic surveillance, and 
military planning have atrophied beyond 
useful levels. 

Conclusion

Studying how human beings perceive, 
comprehend and make decisions while 
interacting with artificial intelligence, 
therefore, remains an absolutely neces-
sary component of the DoD’s AI integra-
tion strategy, and is vital to achieving 
the kinds of synergistic effects between 
humans and computers that most of 
these advanced technologies promise 
to provide. The need for more research 
in human-AI interaction and human-ma-
chine teaming today is greater than ever 
if we are to consider seriously how best 
to capitalize on AI in the DoD in ways 
that improve mission success. Failing to 
do so only perpetuates a strategy that 
asks humans to fit into uncomfortable 

De-skilling is a serious concern for com-
mercial aviation, as well as other domains. 
Tomorrow’s technologies will need to be 
developed using the principals of hu-
man-centered design in order to avoid this 
fictionalized future.
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and ill-fitting technology, and further 
impedes the accomplishment of the de-
cades-old promise of human-machine 
teaming. While the need to stay ahead 
of advanced disruptive technologies, 
we need to also ensure that we do not 
adopt a strategy that results in disrup-
ting only ourselves.
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NEUROSCIENCE

Brain Computer Interfaces (BCIs) 
offer the promise of effective and 
natural human system interac-

tions. While the vision for such interfa-
ces includes a way of directly sharing a 
user’s goals with a machine that could 
then act to satisfy these goals, signifi-
cant challenges with realizing this vision 
remain.  They present a central exem-

plar of human-computer teams: Using 
signals from physiological and environ-
mental sensors, the computer infers the 
human’s goals without requiring human 
effort or attention, then acts to help the 
human accomplish those goals. The net 
result is a human-computer team with 
high-quality, specialized, and shared 
mental models. 

One critical challenge is to develop BCIs 
that will allow for direct interpretation of 
users’ intent from neural data gathered 
through noninvasive means. Noninvasi-
ve brain sensors such as EEG and fNIRS 
are able to probabilistically detect when 
a human intends to do something, but 
do not currently provide enough infor-
mation to infer what they intend to do. 
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It is an open question whether this is 
a problem with sensor resolution and 
analysis or whether the sensor signals 
simply do not contain enough informa-
tion. However, when those analyzed sig-
nals are supplemented with appropriate 
contextual information from the envi-
ronment, it turns out to be possible to 
perform inferences. To provide that con-
textual information, we developed inno-
vative models for event understanding 
and object detection and classification. 
As a result, the BCI effectively acts on 
user intent. When fully developed, this 
will result in a new generation of BCIs 
that will free the operator to attend to 
other mission-important tasks. In work 
sponsored by the Office of Naval Re-
search and the Office of the Secretary of 
Defense, we developed a new architec-
ture for BCIs called Neurocognitive Pat-
terns (NCP) containing both neural and 
environmental information (Figure 1.)

Our research was aimed at inferring 
the motion intent of prosthetic users as 
they go about their daily activities.  To 
collect neural signals we collected data 
from four project team members using 
a 64-channel electroencephalogram 
(EEG) system and a Kinect sensor for vi-
deo and depth signals.  To make the do-
main of potential activities manageable, 

we focused on making coffee and ma-
king toast in a single kitchen-like envi-
ronment. Figure 2(a) shows a sample of 
the EEG data we collected and identifies 
those portions of the signals used to de-
velop a classifier that could tell us whe-
ther the person intended to make a mo-
vement, and Figure 2(b) shows a sample 
of the algorithm that predicts whether 
or not the person intends to move, given 
the EEG signals.  Figure 3 shows a sam-

ple of the video generated by the object 
detection and tracking system that used 
the Kinect signals.

The event understanding system was 
based on the system of human event 
understanding developed by Prof. Jeff 
Zacks at Washington University of St. 
Louis,  Event Segmentation Theory 
(EST). As Figure 4(a) shows, the idea is 
that, given an ongoing event, the brain 

Figure 1: (a) The general NCP architecture for integrating environmental context with neuro-
cognitive information for robust inference of actionable user intent. 

Figure 1:(b) The NCP demo system component diagram with the data coming from the gray 
boxes, analysis in the green boxes, and action in the blue box.
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(Above) Figure 2: (a) Training data for one run of data collection.  The red vertical lines are the places where movement was started in the video. 
The green segments indicate the training data for the intent signal, while the red segments are the training data for the no-intent signal. 

Figure 2: (b) The output of the Linear Discriminant Analysis (LDA) classifier where red dots indicate the probability of no-intent, and blue crosses 
are the probability of intent.
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makes predictions about what comes 
next in a given event, and when those 
predictions fail, it identifies a new event 
to track. NCP used models of coffee- 
and toast-making events, and Figure 
4(b) shows a diagram of the coffee-ma-
king event.

We analyzed the EEG data to detect 
the presence of a motion intent, and we 
used the video and depth information to 
detect, identify, and track objects in the 
environment. To supplement this infor-
mation, the event models for coffee ma-

king and toast making were combined 
with object tracks to identify the hu-
man’s current position in those models 
and the actions that were feasible given 
that position. 

Given the early developmental nature 
of the research, it was not feasible to 
recruit a prosthetic-wearing human, so 
instead we recorded EEG signals and Ki-
nect video and depth information from 
several humans as they made coffee and 
toast in the small kitchen, and then used 
those signals, together with the event 

models, to control a robot arm. We were 
able to demonstrate robot toast- and 
coffee-making using this setup.

It proved challenging to find a robot 
arm with the precision required to make 
toast and coffee in our setup, and in the 
end, in consultation with Dr. Kapil Kat-
yal of the Johns Hopkins Applied Phy-
sics Laboratory, we settled on a Kinova 
JACO robot arm. The arm can be moun-
ted to a wheelchair, but for our demons-
tration, it was mounted to the “kitchen” 
table.  Figure 5 shows the arm inserting 
a K-Cup into a Keurig machine during 
the demonstration of the working sys-
tem.

The result of this research was that we 
were able to create a system that used 
object recognition to feed a model which 
segmented the world into events which 
helped to predict user intent when the 
EEG signals indicated that they intended 
to move.  The system built on the NCP 
architecture allows a user to control an 
intelligent mechanical arm through a 
brain computer interface. This outco-
me, while still preliminary, does show 
that there is promise for context driven 
neural control of human-machine dyads.  
Research will be needed to determine 
how a system like NCP can be extended 

(Above) Figure 4. (a) Diagram of Zacks’ Event Segmentation Theory. Lines in red indicate activi-
ties aimed at identifying a new model when the current model generates too many errors.

Figure 3: Output of Object Clustering where the different pixels are clustered together into distinct objects and then colored on the screen.  In 
this image, we can see the toaster as a dark blue cluster on the left, the Keurig machine in turquoise on the top of the screen, the coffee cup 
in yellow in the top right, the plate in red in the middle, the K-cup as an orange dot in the center right, and our participant’s arm in pink on the 
bottom right.
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to larger teams, but we are confident 
that this is a solid beginning. This line of 
research can usher in a new generation 
of automation that will require dramati-
cally less attention from the operator(s), 
freeing them to attend to other mis-
sion-important tasks.
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A preview of the Virtual Instructor Pilot Referee (VIPER)
Authors: LT Mike “Tinder” Natali, LT Joe “Sway” Mercado, and CDR Chris Foster

INTEGRATING AI WITH 
AVIATION TRAINING

Significant advancements in tech-
nology over the past decade are 
providing society with the oppor-

tunity to leverage innovative methods 
and solutions to enhance the human 
experience via the ever-more complex 
integration and interaction with ma-
chines. These advancements are not 
limited to hardware getting smaller and 
more powerful, but rely heavily on the 
intricate software and programming that 
fuel our computers and devices. One 
of the largest explosions in science and 
technology influencing human-machine 
integration and interaction has been 
in the field Machine Learning (ML) and 
Artificial Intelligence (AI). As computers 
have become powerful enough to hand-
le the processing required to run ML 
algorithms, people have begun applying 
those techniques in attempts to model 
all types of human behavior from pre-
dicting outcomes to mapping individual 
learning.

The Aerospace Experimental Psycho-
logy (AEP) community has taken great 
interest in the application of ML and AI 
to Naval aviation training and has be-
gun several projects to research what 
deficiencies they can address and what 
benefits they can provide. One of the 

major projects in this area is the Vir-
tual Instructor Pilot Referee (VIPER) for 
T-6B student instruction developed by 
Discovery Machines, Inc (DMI). AEPs at 
the Naval Aviation Training Systems and 
Training Ranges program office (PMA-
205), Naval Air Warfare Center Training 
Systems Division (NAWCTSD), and 
Chief of Naval Air Training (CNATRA) are 
working together to integrate and eva-
luate VIPER to determine the training 
impact of an AI-enabled tutor that will 
guide and provide feedback to students 
in practice sessions using Virtual Reality 
(VR) devices.  

One of the best ways to learn is from 
a private tutor or instructor who wor-
ks one-on-one with a student, allowing 
them to identify student strengths and 
weaknesses and adapt teaching to target 
specific learning needs and the Knowle-
dge, Skills, and Abilities (KSAs) of each 
student (Ireson, 2004). Historically, this 
has been practiced via apprenticeships 
where a master artisan or expert trains 
a student “on the job,” in which the stu-
dent learns the necessary knowledge 
and techniques by observing and perfor-
ming under the tutelage of the expert. 
After years of guidance, the apprentice 
then becomes a master in his or her own 

right. In such an environment, it is easier 
for both the student and instructor to: 
ask and answer questions, provide and 
receive feedback on performance, and 
discuss or coach techniques and me-
thods on how to improve performance. 
Although evidence supports this me-
thod of education to optimize learning, 
it is difficult to leverage on a large sca-
le due to time, money, and personnel 
constraints.

Despite these constraints, the need for 
individualized instruction remains, es-
pecially for highly complex jobs such as 
those in aviation. Due to the high-risk 
nature of flight, Naval aviation requires 
students to fly with a qualified aviator 
with access to flight controls to provi-
de not only instruction, but additional 
safety until the student reaches a pro-
ficiency level safe enough to fly alone. 
This allows Naval aviation to capitalize 
on aspects of the apprentice-master dy-
namic during training where each simu-
lator and flight event consists of a sin-
gle instructor and student pair. Though 
the pairing varies based on scheduling, 
it exposes the students to the one-on-
one instruction and experience most 
likely to speed and enhance learning. 
Additionally, each student is assigned an 

AVIATION TRAINING
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ding additional and alternative means 
for delivering quality performance fee-
dback could aid student preparation for 
higher intensity, graded events in the 
simulator and aircraft. This has led the 
Navy to investigate the feasibility and 
utility of providing student aviators AI 
tutors to provide performance feedback 
on non-syllabus practice in VR.
 
Recently, PMA-205, NAWCTSD, and 
CNATRA began work with the commer-
cial AI company Discovery Machine in-
corporated (DMI) to develop a method 
to deliver tailored feedback to students 
during study and practice through the 
use of VR devices. The initial focus is on 
Primary flight training and utilizing the 
T-6B VR Pilot Training Next (PTN) flight 
trainers. Utilizing both adaptive training 
and Artificial Intelligence (AI), DMI is 
developing the VIPER system to mimic 
human instructor feedback based on the 
performance of the student.  Specifical-
ly, VIPER will: be trained to recognize 
a plethora of flight maneuvers and de-
viations from the optimal performance 
of those maneuvers; evaluate student 
performance against objective Course 
Training Standards (CTS) that students 
need to meet on those maneuvers (i.e., 
level of performance necessary); mon-
itor and track trainees attempts and 
progress over time; assess trainee state 

and performance in real-time; identify 
when and how to intervene; and con-
duct an After-Action Review (AAR). 

VIPER integrates the science of real-ti-
me adaptive training for the Navy by 
creating a unique approach to guide and 
evaluate Student Naval Aviator (SNA) 
performance outside of normal training 
events. Partnering with the CNATRA IP 
Subject Matter Experts (SME), the inno-
vative VIPER mental models are develo-
ped based on optimal task performance 
across a variety of maneuvers and se-
quences to allow it to simultaneously 
track and evaluate multiple potential 
task sequences at varying threshold 
levels for a given individual. As more 
students utilize the program and data 
is collected, the underlying machine 
learning algorithms allow not only for 
identifying, tracking, and assessing com-
plex tasks where optimal performance 
may be represented by two or more 
tasks, but will also allow for evaluation 
and feedback based on individual SNA 
experience level. For example, novices 
may be allowed larger tolerances and 
more comprehensive feedback early in 
the learning process to afford experien-

“On-wing” instructor who instructs on 
the majority of beginning flights prior 
to the determination of “safe to solo” in 
an effort to develop better familiariza-
tion and aid instructors deliver lessons 
tailored to student KSAs and training 
progression. 

However, outside of safety restrictions 
and structured use of one-on-one ins-
truction and learning, two major issues 
for increasing student learning and opti-
mizing training pervade Naval aviation: 
the first is an Instructor Pilot (IP) shor-
tage; the second is that outside of sche-
duled syllabus events, students do not 
receive feedback or practice guidance. 

Feedback is in integral part of training 
and essential to improving performan-
ce – it is how students learn to address 
and mitigate their mistakes. With an IP 
shortage and limited feedback opportu-
nities during training, finding alternate 
or virtual means for students to receive 
guidance in their training may improve 
student learning and progression throu-
gh training while not relying on limited 
personnel resources. Research has con-
sistently shown the value of deliberate 
practice in the development of experti-
se (Ericsson & Charness, 1994) as well 
as the value of specific feedback on per-
formance (Kluger & DeNisi, 1996). Fin-

The VIPER Interface, designed to streamline 
Naval Aviation Training, and inform future 
manning and training pipeline decisions.
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tial learning. As experience is gained, 
VIPER will recognize any improvements 
to performance and automatically ad-
just the feedback and training parame-
ters to provide continued challenges – 
more difficult scenarios and/or tighter 
thresholds which require more precise 
and timely decisions and actions. The 
resultant human-machine teaming and 
instruction will provide individualized 
training that enhances and reinforces 
SNA learning and skill acquisition by 
providing AI-tailored guidance beyond 
the traditional student-IP relationship.

Examining the technical side of the hu-
man-machine teaming effort, VIPER le-
verages multiple technologies to create 
an environment where an SNA can re-
ceive effective one-on-one feedback 
virtually, reducing the demand for hu-
man IP instruction. First, DMI has deve-
loped a unique approach to the problem 
of transferring SME expertise into digi-
tal information with powerful knowle-
dge enabling software: the Knowledge 
Service Modeler. The Modeler allows 
SMEs to digitally capture, encode, and 
leverage their own specific strategies for 
solving complex problems, thus enabling 
SMEs to develop model parameters to: 
1) Quickly capture and encode trainee 
behaviors; 2) Display, share, and ma-
nipulate that knowledge; and 3) Effec-
tively analyze knowledge bases, using 
their own expertise.

Second, leveraging previous develop-
ment on a Defense Advanced Research 
Project Agency’s (DARPA) “AI Next” 
sponsored project, DMI built the capa-
bility to enable SMEs to encode “critic” 
models where the “critic” looks at other 
models and logs of their results in order 
to contrast the other models for moni-
toring, assessing, intervening, and injec-
ting. VIPER provides this capability to 
monitor a trainee’s actions and compare 
those actions to expert specified hierar-
chical models as well as other students 
using the program. Thus, VIPER has the 
capability to compare SNA performan-
ce against both IPs and SNA peers to 
provide a more accurate model of KSA 
progression as assessed by the program. 
Beyond monitoring the trainee, the cri-
tic model also briefs the trainee on his 
or her performance after the scenario 
or maneuver is completed. This After 
Action Review (AAR)  builds  a dialog 
with the SNA by comparing the log of 
the trainee’s action to the desired expert 

behavior developed from CTS and IP 
SME input. The critic capability is simi-
lar to that of IBM’s AI question-answe-
ring computer system, Watson, and is 
integrated across the VIPER program. 
Serving as the interactive-basis for the 
AI instructor guiding the student, the 
VIPER’s critic model has the ability to 
prioritize based on training objectives, 
criticality, and student ability. 

As DMI develops the VIPER AI tutor and 
underlying critic model, it is imperative 
to collect data from SNAs and IP SMEs 
utilizing the program to give the machi-
ne learning algorithms the information 
to develop trends and accurate models 
of learning and skill acquisition. To assist 
with data collection and program refine-
ment, DMI is providing incremental de-
velopments of the program to CNATRA 
for student use and practice. This will 
give VIPER the necessary data to build 
and refine appropriate models.  Further, 
CNATRA will also provide SNA feed-
back to DMI on the system as a whole 

in order to enable DMI to improve the 
human-machine interfacing and applica-
tion. For initial deployment and evalua-
tion, DMI is developing 22 T-6B flight 
maneuvers from Primary flight training 
for VIPER, including but not limited to: 
takeoff, power-on-stall, barrel roll, Cu-
ban, and Split-S.

 The VIPER program also offers student 
profiles that track performance across 
attempted maneuvers: as the student 
gets closer to “expert” performance (i.e., 
meeting CTS), the highlighted maneuver 
name shifts from Red to Yellow to Green. 
For example, in image 2 below the SNA 
has met CTS for the “Loop” maneuver, is 
progressing on “Split S” and “Barrel Roll,” 
and has significant work to do on “Aile-
ron Roll” and “Immelman” maneuvers. 
DMI has also created a “Profile Builder” 
tool to allow instructors or SNAs to 
construct complex events by stringing 
multiple maneuvers together to mimic 
syllabus simulator or flight events. Thou-
gh only starting with a limited number 

KINGSVILLE, Texas (July 17, 2020) Lt. j.g. Madeline G. Swegle, the U.S. Navy’s first Black 
female tactical jet aviator stands in front of a T-45C Goshawk jet trainer aircraft on the Training 
Air Wing 2 flight line at Naval Air Station Kingsville, Texas, July 17, 2020. Swegle completed 
her final training flight with the “Redhawks” of Training Squadron 21 (TW-2). TW-2 is one of 
five air wings under the Chief of Naval Air Training and conducts intermediate and advanced 
jet training for the Navy, Marine Corps, and international military partners. VIPER, and other AI 
technologies, may play a large role in U.S. Navy aviation training in the near future. (U.S. Navy 
photo by Lt. Michelle Tucker/Released)
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of events, DMI will continue work on 
expanding the maneuver list and refi-
nement of how the program works with 
additional maneuvers scheduled for de-
livery by the end of Fiscal Year 2020. 

Ensuring that the VIPER system is effec-
tively integrated and fully transitioned 
into Naval aviation training requires that 
a comprehensive training evaluation 
be conducted in order to demonstrate 
program utility and effectiveness and 
to inform how best to build VIPER into 
the CNATRA curriculum.  PMA-205 and 
NAWCTSD in partnership with CNATRA 
will evaluate the impact it has on student 
performance. AEPs CDR Chris Foster 
(PMA-205), LT Joseph “Sway” Mercado 
(PMA-205 and NAWCTSD), and LT Mike 
“Tinder” Natali (CNATRA) will be leading 
an in-depth study and evaluation of the 
VIPER program and student training 
outcomes. This study will examine usa-
bility, frequency and purpose of use, 
scenario development, skill progression 
within VIPER, and impact on syllabus 
training events (i.e., grades): 

Usability
Throughout the evaluation, SNAs will 
be asked questions about their expe-
riences with VIPER, such as how well 
they thought VIPER worked. This qua-
litative feedback will provide insights 
into design improvements to facilitate 
human-machine integration for training. 

Frequency and 
Purpose of Use 
Student use of the VIPER program will 
be tracked to capture data such as fre-
quency and duration of use (how often 
and how much) as well as the SNA’s 
objective or purpose for each use (e.g., 
event preparation, maneuver practice, 
event remediation). Understanding fre-
quency, duration, and purpose of use 
provides a better understanding of how 
to incorporate the program appropriate-
ly into a training syllabus.

Skill Progression 
within VIPER
SNA progression and performance on 
programmed maneuvers will be tracked 

within VIPER. This data will be matched 
with SNA training records to see how 
different progression or performance on 
the various maneuvers relates to per-
formance in graded simulator and flight 
events. Results will inform decisions on 
how best to incorporate potential VIPER 
syllabus events into training.

Impact on Syllabus 
Training Events
SNA frequency, duration, and perfor-
mance utilizing VIPER will be evalua-
ted against performance in training via      
grades on simulator and flight events 
during the Contacts and Instruments 
stages of Primary Flight Training. Data 
will be compared to those who went 
through training without VIPER access 
to determine whether the AI tutor provi-
ded beneficial guidance, i.e., SNAs utili-
zing VIPER performed better than those 
who did not use it.

The evaluation of VIPER is set to be-
gin in 2020 at Naval Air Station Corpus 
Christi, Texas and last up to a year to co-
llect the necessary data. Following the 
evaluation, the research team will pu-
blish a Technical Report detailing all re-
levant findings and provide recommen-
dations to guide future integration and 
development of VIPER. If the results of 
the evaluation show VIPER significantly 
improves SNA training, developing VI-
PER for both the T-45 and TH-57 are 

the next logical paths forward as well as 
extending VIPER into more challenging 
graded items or mission sets.

Funded by the NAVAIR Small Business 
Innovation Research Office and PMA-
205, the VIPER development and eva-
luation will inform how to optimally 
incorporate Virtual Reality into aviation 
training and leverage new technology to 
better integrate humans and machines 
with the purpose of improving learning 
outcomes. 
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As I write this article, we are seve-
ral weeks into the shelter-in-pla-
ce response to COVID-19. Like 

many, I’m now juggling telework and ho-
meschooling duties (I get to relive teach 
2nd and 5th grade, the joys!). When I’m not 
videoconferencing or remotely mana-
ging projects, my kids and I are co-rea-
ding Harry Potter (for Language Arts) 
and repurposing old Lego sets (for our 
STEM needs). Interestingly enough, the 
details of this scenario provide context 
for discussing human machine teaming 
(HMT), which I will do herein by refe-
rencing principles of macroergonomics 
(Hendrick, 2002) and systems integra-
tion (Siemieniuch & Sinclair, 2006).  

Macroergonomics is the study of so-
ciotechnical work systems. Within this 
framework, the social subsystem corres-
ponds to our “human” element of HMT. 
It refers not only to the individuals who 
carryout work-related tasks, but also to 
how personnel interact in terms of co-
llaboration, competition, and power re-
lations. The technical subsystem maps 
onto the “machine” element of HMT, 
including the design and availability of 
tools and technologies, as well as the 
frequency, difficulty, importance, and 
sequencing of their use. The “teaming” 
nature of HMT, as you might expect, 
corresponds to how these social and 
technical subsystems interact within the 

operational environment, which itself is 
characterized by physical and cultural 
subsystems.

Hal Hendrick, the father of macroergo-
nomics, provides insight into how socio-
technical systems operate and guidance 
on how to maximize their effectiveness 
(2002). The social and technical subsys-
tems, he writes, are inherently interde-
pendent, such that changes to one will 
likely affect change in the other. It is 
important, therefore, to consider how 
different personnel might interact with 
the same technology in unique ways 
(which can happen with staff turnover), 
or how even small changes to a tech-

MANAGING 
UNCERTAINTY

DECISION SCIENCE

How lessons learned from the recent world-wide push to work 
from home reinforce the critical need for human-machine 
teaming principals
LCDR Brennan D. Cox, AEP #142
Assistant Professor, Human System Integration
Naval Postgraduate School, Monterey CA
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nical component could influence how 
it is interpreted or used by the human 
operator (as with system updates). This 
interdependence has implications for 
system design and engineering, as well 
as user training, if the goal is to achieve 
consistent and acceptable performance 
in HMT events.

Hendrick also observes that social and 
technical subsystems operate under 
joint causation; that is, they are similar-
ly open and responsive to internal and 
external influences (e.g., policy change, 
OPTEMPO, budget constraints…a pan-
demic). Because these subsystems res-
pond jointly to causal events, optimizing 
one subsystem (e.g., acquiring a state-
of-the-art technology) and then forcing 
the other to adapt to it (e.g., training the 
uninformed operator on its use) will lead 
to suboptimal integration and perfor-
mance. A preferred approach, Hendrick 
advises, is to pursue joint optimization; 
that is, shared and synchronized consi-
deration of the characteristics, require-
ments, and objectives of the human and 
the machine. This joint optimization, by 
necessity, will require attention to the 
overarching work system as well, as the 

organization’s structure, resources, and 
related processes must be compatible 
in order to support the human-machine 
interaction.
 
When COVID-19 mandated school clo-
sures and shelter-in-place orders disrup-
ted the social and technical subsystems 
of my household (let alone the world), 
“Just use Zoom,” was the immediate re-
commendation to millions of workers 
and students forced to work from home, 
many with little to no preparation. In this 
case, a technology-driven solution was 
pushed upon a user population as part 
of “the new normal.” The tool (or moda-
lity) for conducting operations was prio-
ritized, with less concern given to the 
psychosocial characteristics of the users 
and the limitations of their work envi-
ronment (e.g., not enough home com-

MarineTraffic’s Density Map format showing 
vessel trajectories from billions of data points 
from 2017. The ‘cool’ colored lines signify 
that a route has not been taken often, the 
‘warm’ colored lines signify where routes are 
often utilized. The result is a global dataset of 
ship tracking density. Operations to identify, 
track, and interrupt illegal trafficking across 
international shipping routes are examples of 
domains that the U.S. Navy is seeking to leve-
rage decision support systems built on a pla-
tform of Machine Learning. Photo by Victor 
Chen, US Naval Research Laboratory.
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puters for simultaneous use; insufficient 
bandwidth for streaming). As I explained 
to my kids, not all witches and wizards 
return to magical households when 
school ends; some, like Harry Potter, 
leave the comforts of Hogwarts, where 
they’re encouraged to use wands, flying 
brooms, and potions, to living with the 
disgruntled Durselys in the cupboard 
under the stairs.  

Hendrick would advocate for a diffe-
rent approach. Among macroergonomic 
practices to avoid, he cautions against: 
(1) technology-centered designs [de-
signing technology without considering 
human limitations, interests, etc.]; (2) a 
“leftover” approach to function and task 
allocation [assigning machines to do the 
work, leaving humans to supervise the 
technology]; and (3) failure to consider 
the organization’s sociotechnical cha-
racteristics when integrating systems. 
The preferred strategy should instead 
strive for (a) joint design [simultaneous 
consideration of the social and techni-
cal subsystems]; (b) a human-centered 
approach to function and task allocation 
and task design [making full use of hu-
man skills and compensating for human 

limitations, with leftover functions allo-
cated to the machine]; and (c) integra-
tion with the organization’s sociotechni-
cal characteristics.

In their cross-departmental collabora-
tive, Carys Siemieniuch (Dept. Systems 
Engineering) and Murray Sinclair (Dept. 
Human Sciences) of Loughborough 
University offer additional insights on 
systems integration applicable to HMT 
(2006). They begin by making a distinc-
tion between complicated and complex 
systems. Like a Lego set, complicated 
systems may be difficult to understand, 
yet they consistently behave according 
to their design and can even be decons-
tructed and reassembled to understand 
their inner workings. Out of the box, 
like a piece of Ikea furniture, users need 
only to follow the step-by-step pictures 
to assemble even the most daunting of 
Lego creations. Some Lego sets are even 
powered, with motorized parts and blin-
king lights. Nevertheless, they can be 
taken apart and put back together, again 
and again, so long as no pieces are lost, 
damaged, or repurposed. They are com-
plicated, but not complex.  
 

Complex systems are far less predic-
table. In many cases, this complexity 
erupts from the introduction of the hu-
man-in-the-loop. Unlike traditional en-
gineered systems, human systems learn, 
adapt, and behave in unexpected ways. 
These complex systems have intelligen-
ce. They behave with autonomy. Their 
parts become highly interconnected, 
with each interconnection having its 
own goal or agenda. Complex systems 
evolve, and they’re capable of operating 
an evolving environment. These pro-
perties, most if not all of which apply to 
HMT, create a pathway for system en-
tropy, coping mechanisms, chaos, and 
ultimately, darkness. 

Systems entropy refers to the process by 
which a system (or system component), 
if left to itself, ultimately succumbs to 
environmental pressures, decays, and 
dies out. Adaptation, therefore, beco-
mes necessary for complex systems to 
survive long-term. This adaptation may 
take the form of supervised maintenan-
ce or system upgrades, or it could be far 
less structured… unanticipated even. In 
response to external threats, complex 
systems turn to coping mechanisms – 

A Marine with Company F, Headquarters Group with 2nd Battalion 5th Marine Regiment, relaxes against his pack as company commanders gather 
in the back of an Assault Amphibious Vehicle to plan their next movement during Integrated Training Exercises aboard Marine Corps Air-Ground 
Combat Center Twentynine Palms California. Training exercises that integrate the ground combat, air combat and logistics combat elements of the 
Marine Corps into one fully capable and lethal unit are logistically challenging, and require tremendous technical integration efforts. (U.S. Marine 
Corps photo by Cpl. Timothy Valero)
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conscious or unconscious strategies for 
resolving conflict and increasing (the 
perception of) control. Consider the 
“innovative” user who does not fully un-
derstand the system they’re operating, 
and so they devise workarounds and 
shortcuts, reinterpret policy, and repur-
pose parts in order to get by. 

As a result of system entropy, and the 
measures complex systems take to 
counteract its effects, long-term stabi-
lity becomes an illusion and “normality” 
less defined. In some cases, new tech-
nologies are introduced to offset system 
decay, leading to mergers rather than 
subsystem replacements. This increa-
ses the number of interconnections, 
which provides a precursor to chaos (or 
chaos-like effects). According to Sie-
mieniuch and Sinclair, as the number of 
variables in a complex system increases 
linearly, the workload to manage the 
system increases logarithmically. Fur-
thermore, unaccounted for second and 
third order “ripple” effects may emerge 
and inhibit system stability. Complex 
systems are chaotic, and full of inherent 
surprises.

Which brings us to the darkness princi-
ple, which holds that no complex system 
can be known completely. Is this the 
case with all HMT events? Probably not. 
But as the conditions of HMT approach 
the criteria for complex systems out-
lined above, it is reasonable to assume 
our ability to predict HMT behavior ero-

des. Fortunately, there is a corollary to 
the darkness principle: although com-
plex systems may never be completely 
known, they can be managed effectively 
(Lundgren-Cayrol, 2000). To do so, those 
working in systems integration (or HMT 
for that matter), should seek to:

- Devise a common framework and lan-
guage for addressing issues of system 
complexity; 
- Constrain the evolution of require-
ments and system configurations du-
ring design, maintenance, upgrades, and 
operation of the system over its lifecy-
cle;
- Model the way complex systems 
self-organize, or co-evolve; 
- Mitigate factors that influence the 
emergence of undesirable behaviors;
- Improve our ability to predict and/or 
detect and filter out such emergent be-
havior (Siemieniuch & Sinclair, 2006).

Although they do not mention it in their 
writing, an essential step to managing 
complex human systems integration is to 
follow the example of Siemieniuch and 
Sinclair, themselves, by building bridges 
between our systems engineering and hu-
man sciences departments. Members of 
the Aerospace Experimental Psychology 
community, along with our network of 
scientists, systems design/developers, 
operators, maintainers, and support per-
sonnel, are in a unique position to fulfill 
this critical requirement.

Whether we are dealing with sociotech-
nical systems, complex systems, HMT, 
or a worldwide pandemic, uncertainty is 
the only certainty. 

But we can manage it.
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Lt. Aaron Van Driessche, a warfare tactics 
instructor at the Center for Surface Combat 
Systems (CSCS), Detachment San Diego, pi-
lots the U.S. Navy’s virtual combat curriculum 
with Sailors aboard USS Paul Hamilton (DDG 
60) inside the newly launched portable simu-
lator, the On Demand Trainer. Technologies 
such as this trainer enable highly complex, in-
tegrated operations to be taught in a fraction 
of the time it took using traditional methods. 
Tomorrow’s military members will increasin-
gly interact with hybrid intelligent systems 
designed to afford rapid decision making 
amidst highly complex, time-constrained, and 
high-risk scenarios. (U.S. Navy photo by Mass 
Communication Specialist 2nd Class Joseph 
Millar/Released)
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MEET AN AEP

LT Aditya Prasad, AEP #156, discusses his motivation for joi-
ning the AEP community and what drives his interests in his 
role at the Naval Air Warfare Center.

MEET AN AEP

The decision to leave civilian life 
and join the military is one that 
involves a lot of personal choice 

and preferences. There is no “standard” 
servicemember, and there is certainly no 
standard uniformed scientist, despite 
what some movies or books may depict.  

In this series, we spotlight individual 
AEPs to learn more about them in a 
one-on-one interview format in order to 
narrow that gap, and foster relationships 
and collaboration across our community. 

In this issue we will meet LT Aditya Pra-
sad. He just completed a three-year tour 
at the Naval Air Warfare Center, Aircraft 
Division at Naval Air Station Patuxent 
River, MD. 

What is your academic back-
ground?

I attended the University of Southern 
California from 2005-2015. My original 
plan was just to complete a Bachelor’s 
in Psychology, but when the opportunity 

presented itself, I chose to stay on and 
pursue my PhD in Cognitive Psychology, 
picking up my Master’s along the way.

What made you decide to be-
come an AEP?

After spending 10 years in an academic 
setting I was looking for a brand new 
path, one that would let me take the 
knowledge and skills I’d acquired and 
apply it to real-world situations. 
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Learning about the Navy’s Aerospace 
Experimental Psychology community 
and the work AEPs do throughout the 
fleet, combined with the excellent expe-
riences I had during face-to-face mee-
tings with members of the community, 
convinced me that I’d found my path.

What was your most vivid 
memory of training?

There are actually several that spring to 
mind! The Helo Dunker – the helicopter 
water survival trainer in which you are 
submerged, inverted, wearing blackout 
goggles, was one of my favorite training 
events. Then there was camaraderie and 
sense of accomplishment I shared with 
my cohort on Flight Suit Friday, when 
you earn the right to wear your flight 
suit. Finally, the first time I was given 
the controls of the fixed wing and rotary 
wing training aircraft was an incredible 
sensation.

What has been your favorite 
project as an AEP and how 
will it impact the Navy?

I have been privileged to work on a pio-
neering effort focused on improving the 
readiness and lethality of our aviation 
assets through modernization of aircraft 
maintainers and support personnel. It is 
not immediately obvious, but generating 
a single flight hour on any given aircraft 
requires dozens of hours of maintenan-
ce and logistics, and a similar number 

of boots-on-ground personnel. As a 
result of several data collection efforts 
conducted throughout the fleet, the 
Design for Maintenance Engineering 

team in NAWCAD’s Human Systems 
Engineering Department has been able 
to identify several personnel- and equi-
pment-based inefficiencies in the com-
plex process of producing ready-to-fly 
aircraft. These data formed the basis of 
a broad package of solutions—including 
tools, personal protective equipment, 
and processes—that received a five-year 
funding package to modernize and opti-
mize the performance of aircraft main-
tenance and support personnel across 
the fleet.

What are your career goals?

One of the reasons why I was so attrac-
ted to serving as an AEP was that it is 
a career that affords me great oppor-
tunities with lots of variety. When I fi-
nished grad school, I didn’t really know 
whether or not I wanted to continue on 
in a post-doc position, or work in a lab 
environment, or continue on pursuing a 
career in academia. The AEP community 

LT Prasad beside the USS Chaffee, a guided-missile destroyer, in Honolulu, Hawaii. LT Prasad 
spent three weeks underway on the Chaffee studying circadian rhythms of crew as part of a 
study for the Naval Post-Graduate School. 

LT Aditya Prasad, AEP #156 at the controls of an Army Beechcraft C-12 Huron conducting a 
courier mission for secret materials...
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has given me an opportunity to explore 
all of my options, while giving me great 
experience. I have found a great deal of 
enjoyment and fulfillment in advocating 
for seeking solutions to problems by fo-
cusing on the human as the centerpoint 
of a system—be that an information sys-
tem, a weapons system, an aircraft, etc. 
I hope to continue to promote this view 
and am eager to see the many different 
roles and positions in which I can do so, 
through research, policy, and other ave-
nues. 

For those who are conside-
ring applying, what qualities 
make a great AEP?

From my experience, great AEPs de-
monstrate a strong dedication to the 
fleet, never losing sight of the fact that 
they serve the Sailors and Marines on 
the line. In addition, I feel it is important 
to be able and eager to problem solve 
in innovative and unconventional ways, 
thinking outside the box to find novel 
solutions. Finally, patience and humility 
are especially important. The Navy is a 
vast organization. In order for your skills 
and experience to make an impact you 
must first spend time learning about the 
culture, the processes, and the mission.

LT Prasad navigates his way through the USS Chafee. Visits to ships like the Chafee are unique 
opporunities that uniformed scientists like AEPs can afford, which take science out of the lab 
and into the wild. 
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The AEP community is made up of 
a group of individuals, committed 
to a common goal, and united by 

a common passion- to apply scientific 
knowledge to help solve problems in 
the real world. Our group is small. At 
the time of this writing, we have 29 uni-
formed active duty members in a Navy 
comprised of just over 300,000 sailors. 
But it is not our size that defines us; it is 
our sense of community. A feature of our 
small, but tight-knit family is that each 
individual is afforded the opportunity to 
be known. In a community that numbers 
its members going back to World War II, 
each individual inevitably leaves a mark 
on the community. Perhaps no other 
AEP left as much of a mark as CDR Ro-
bert Samuel Kennedy, AEP #10. 

Bob Kennedy, Ph.D was commissioned 
as an AEP on August 27th, 1959. These 
were the days of the early Cold War era, 
when the space race served as the co-
llective focus of the United States. There 
were tremendous scientific hurdles that 
had to be cleared in order to achieve 
the stated mission of landing a man on 
the moon. This era also say a remarka-
ble spike in growth in both military and 
commercial aviation. As systems grew in 
both complexity and scope, and new vi-
sions of the future grew into existence, 
new problems emerged that demanded 
new methods of inquiry, and new solu-
tions. Bob was a pioneer in this era. He 
was a human factors engineer, which 
had only just recently became a profes-
sional discipline that was recognized by 
the greater engineering communities. 
The Human Factors and Ergonomics 
Society had only just been created in 
1955. The US Navy was in the process 
of updating its aging fleet, retiring ships 
used in WWII, and updating them with 
newer, sleeker, more efficient models. 
This was the beginning of a new era in 
Naval Warfare, which saw the USS En-
terprise (CVN-65) commissioned. It was  
the first nuclear-powered aircraft carrier 
the world had ever seen. 

Bob joined in with other human factors 
scientists who were applying new for-
ms of inquiry such as task analysis, and 
cognitive work analysis to better design 
aviation cockpits, screen displays, radar 
interfaces, and weapons systems. Bob 
led the way to investigating issues such 
as the origins of motion sickness, inter-
face layouts and their effects on deci-
sion making, and developing imaging 

training methods for aircrew. Wherever 
Bob Kennedy went, he left his mark, and 
his notoriously astute and clever dispo-
sition added value to the work groups 
that he joined. 

Bob served in the Navy for 22 years of 
active duty service as an AEP, before re-
tiring, where he continued to work as a 
government scientist. All told, Bob gave 
the world over 60 years of industry-lea-
ding contributions in human factors and 
simulation sickness research. He was a 
pioneer and a legend within our com-
munity. When the US Navy AEP Society 
(USNAEPS) created its annual awards 
10 years ago, there was only one AEP 

we seriously considered as the name-
sake for our excellence in research award, 
as there has been no member of our 
community who has come close to the 
impact that CDR Bob Kennedy had on 
our field of practice, and likely no practi-
tioner of human factors that hasn’t cited 
his work. He pushed us forward, gene-
rating new insights, and producing a li-
brary of publications that changed how 

we design and use simulation. All AEPs, 
and all human factors practitioners, truly 
stand upon his shoulders.  

Bob Kennedy passed away December 
16, 2019 at the age of 83. He was a 
loving husband to Susan Lanham Ken-
nedy, and a pillar of strength to his chil-
dren Kathryn Chambers, Robert Ken-
nedy (Dawn), Richard Kennedy (Rose 
Wenner), Kristyne Kennedy, and step 
children Elizabeth Patrie (Don), Mary 
Chappell (Scott) and Heather Fox (Matt). 
He was adored by 11 grandchildren and 
five great grandchildren. 

Below are some remembrances from 

IN MEMORIAM

We Remember
The AEP community says goodbye to one of its longtime and most influential members.

CDR Bob Kennedy, AEP #10, rides the “vomit comet” to conduct human factors research in 
collaboration between the US Navy and NASA. Reduced Gravity aircraft such as this enable 
researchers to study the effects of low-G on humans.
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other retired AEPs who worked with 
Bob Kennedy during and throughout 
their careers.
-------
Mike Lilienthal, AEP #71 remembers 
Bob Kennedy

I first met Bob at a formal AEP get to-
gether meeting, but did not really get to 
know him until a few years later when 
I was stationed at the Naval Air War-
fare Center, Training Systems Division 
(NAWC-TSD)  in the 1980s.  Bob had 
already retired from the Navy and was 
working with Norm Lane, a fellow AEP.  
Bob, Norm, and I worked together on 
the study of simulator sickness.  The 
Google search application was not in-
vented until 1998, but that was okay, 
because I had Dr. Kennedy via land 
line. He had information from books, 
presentations, journal publications, and 
firsthand knowledge at his mental fin-
gertips, and was a wealth of knowledge.
  
During technical discussions he would 
reel off citations and then have an as-
sistant make a copy of the publications 
from his personal library.  I would walk 
away with a thick folder of helpful rea-
ding material.  Bob spent a lifetime lear-
ning and adding to the Navy’s, as well 
as the world’s, pool of knowledge about 
human exposure to accelerations and 
motion on different platforms. Bob was 
in his element collecting data, running 
subjects, and synthesizing information. 
He gave his knowledge freely to our 
community.  

During his naval career you would find 
him on the vomit-comet experiencing 
weightlessness, in the Pensacola slow 
rotation room, which was used to expo-
se subjects to up to 10 revolutions per 
minute for days; or on a ship in the Nor-
th Atlantic in search of a storm. His sen-
se of adventure permeated everything 
he did, and he was always on the move.

Bob always had a twinkle in his eye, 
and I am having trouble remembering a 
time when Bob had raised his voice or 
showed anger.  I remember him as a man 
of patience who was eager to share his 
knowledge openly and freely.  He loved 
his family and always enjoyed seeing 
them “growing like weeds.”   The AEP tri-
be is diminished by his loss, but it is also 
stronger because of his help and gentle 
mentoring.    

Bill Moroney, AEP #46 remembers Bob 
Kennedy

Bob was one-of-a-kind. Not only was 
he technically competent but he was 
always willing to share that competen-
ce.  He saw real connections that most 
of us missed. I was always amazed by 
his ability to create testable hypotheses 
and to back them up with reference to 
the literature (which he often pulled off 
the shelf or out of a drawer).  I expect, 
that now that he is safely home, he is 
still asking challenging questions. Bob 
was more than a “walking Wikipedia” in 

the areas of aviation. aerospace, human 
factors and psychology. He is a major 
node in an ever-expanding sociogram of 
researchers and practitioners.

Bob was an indefatigable mentor and I for 
one owe a lot to him and will miss him as a 
mentor and a friend.  My thoughts at this 
time turn to Lincoln’s memorialization of 
those who died at Gettysburg.  He said, 
“It is for us, the living, rather, to be dedi-
cated here to the unfinished work which 
they who fought here have thus far so 
nobly advanced.” We owe it to Bob to 
serve as mentors in whatever way we 
can.  Bob, enjoy your well-earned rest!

CDR Bob Kennedy (Left) examines data from sensors on board NASA’s reduced gravity KC-135A 
aircraft. Experiments on weightlessness gathered through flights like these helped scientists 
and engineers better design safety systems for high-velocity aircraft, including ejection seats in 
later-generation aviation.

CDR Bob Kennedy (third row from the front, second from the right) poses with his fellow Aeros-
pace Experimental Psychologists in front of the Naval Aerospace Research Laboratory on board 
Naval Air Station Pensacola, circa 1970s.
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BRAVO ZULU

Bravo Zulu!
Some recent accomplishments from around the US Navy Aerospace Experimental Psychology community

Notable 
achievements:

Congratulations to CDR Tatana Olson 
(above) for being elected President of 
APA Division 19 Military Psychology in 
June 2020! 

LCDR Lee Sciarini is the government 
PM for the On Demand Hypoxia Trainer 
(ODHT), now in acquisition contracting. 
CNAL and CNAF have both asked for 
Class 1 Aviator evaluation of the ODHT, 
representing the most senior interest in 
this tool to date. CNAF will soon make 
an acquisition decision about whether 
to provide ODHT units at all Air Wings. 

Congratulations to CDR Mike Lowe and 
CDR Noel Corpus on their selections for 
FY21 promotion to the rank of Captain, 
as announced 13 May 2020! 

CDR Chris Foster (above) coordinated 
the Strategic planning and Program 
Office Memorandum (POM) processes 
for Naval Aviation Training and Training 
Ranges to include $1.7B POM-22 por-
tfolio; Science and Technology Level 1 
for PMA-205 with direct oversight of 57 
programs and $72M.  He is spearhea-
ding the development of Mixed Reality 
training technologies for Aviation trai-
ning applications and has delivered 22 
VR trainers in 2019.

CDR Brent Olde (above) stood up a new 
NAVAIR Aeromedical Division, charte-
red to bridge the gap between medical 
experts and the acquisition process, 
thus ensuring critical medical require-
ments are integrated into naval aviation 
programs. He established two branches 
containing 30 subject matter experts 
and successfully added 1 MC and 5 MSC 
billets for future support through the 
POM process. An organizational change 
of this scope will have long-range im-
pact on NAVAIR’s ability to respond to 
human systems needs.

LCDR Rolanda Findlay (above) is part of 
the team standing up the Bureau of Me-
dicine and Surgery’s (BUMED) first Me-
dical Capabilities Integration (MCI) Pro-
gram Management Office (PMO). This 
effort is focused on adding organizatio-
nal and acquisition management proces-
ses and structure to medical acquisition 
efforts, a critically necessary underta-
king for ensuring BUMED maintains the 
organizational flexibility it needs in the 
modern environment.

LCDR Joe Geeseman (above) is the User 
Interface/User Experience (UI/UX) Lead 
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for Next-Generation Navy Mission Plan-
ning System, leading a team of military, 
industry, and academia personnel to de-
velop state-of-the-art mission planning 
software that will utilize modern user 
interaction capabilities including aug-
mented reality and virtual reality to re-
duce mission planning time and improve 
mission success that will be used by all 
aircrew for all aircraft in the US Navy 
and Air Force by May 2021.

LCDR Ken King (above) is coordinating 
a team including members from acade-
mia and DoD research labs to further 
selection efforts using biomechanical 
and latent specific ability markers to find 
better aviation candidates, more quickly, 
cheaply, and reliably. 

LCDR Pete Walker (above) has been na-
med the Program Lead for Project Salus, 
which provides a Joint All-Domain Com-
mand and Control dashboard for NOR-
TH-COM and National Guard focusing 
on shortages in supply chain and CO-
VID-19 Disease Modeling. He was also 
hand-selected to lead the acquisition 
side of the Joint Artificial Intelligence 
Center (JAIC). He presented his team’s 
work to Dr. Deborah Birx and the Whi-
te House COVID-19 Task Force in July 
2020.

LT Heidi Keiser (above) is conducting 
psychometric evaluation of current and 
proposed changes to test content and mini-
mum scores for the Aviation Selection Test 
Battery (ASTB), including future attentional 
control measures, diversity implications for 
changes to minimum scores and retest poli-
cies, and updates to computer-adaptive test 
score calculations algorithms. 

LT Joe Mercado (above) was hand-se-
lected to manage the program directly 
supporting CNATRA 2020-2025 Vision 
for OPNAV N98. His efforts resulted in 
the delivery 22 trainers in under 10 mon-
ths to operational/training commanders 
supporting more than 1300 pilot trainees 
per year and expected is to reduce training 
time by 3 months days with a cost avoi-
dance of $105M/FY.

LT Mike Natali (above) serves as Lead 
scientist of Naval Aviation Training Next 
and Project Avenger for the Chief of Naval 
Aviation Training (CNATRA), developing 
new aviation training methodology, cul-
ture, and syllabi integrating Virtual Reality 
(VR) technologies to improve student qua-
lity and reduce time to train.

CDR Tatana Olson (above) led the 
NAMRU-D response to the physio-
logical episode challenges facing Na-
val aviation, a program of research 
comprising 45 projects for $12M ad-
dressing a comprehensive range of 
potential contributing factors and mi-
tigations including physiological sen-
sor verification and validation, work of 
breathing and respiratory challenges, 
atelectasis, hypoxia, flight gear fit, bra-
in-based monitoring, and oxygen and 
pressure fluctuations. 

LT Sarah Sherwood (above) is leading in-
dependent testing and evaluation of the 
Otolith bone-conducted vibration head-
set for airsickness mitigation for USAF 
Air Education and Training Command to 
address a listed capabilities gap and to 
improve student pilot recruitment, per-
formance, and retention. 

LT Eric Vorm (above) has been named 
Evaluation Team Lead for the DARPA 
Explainable AI program, a $95M 3-year 
effort to study and develop techniques 
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and technology to make artificial inte-
lligence more transparent so that users 
can better understand and trust its ou-
tputs. 

Four AEPs are serving on 2020 MSC Stra-
tegic Goal Groups (SGG): CDR Hank Phi-
llips (SGG Lead) and LT Joe Mercado serve 
on the Transition Tracking SGG, evaluating 
the progress, impact, and most pressing 
needs associated with the transfer of Medi-
cal Treatment Facilities to Defense Health 
Agency Control  

Assistant Specialty Leader LCDR Lee Scia-
rini and LT Mike Natali serve on the High 
Reliability Organization SGG, focused on 
practices to improve organizational effi-
ciency and effectiveness within the Medi-
cal Service Corps. 

Three AEPs are supporting the My Navy 
Coaching (MNC) Effort, a part of the larger 
Performance Transformation effort, and is 
an effort to transform the current mid-term 
counseling system. CDR Tatana Olson is lea-
ding the Research Testing, & Analysis group, 
relying on the expertise and contributions 
of LT Heidi Keiser and LT Mike Natali on 
lines of effort including development of a 
mid-term counseling survey, summaries of 
relevant research, and execution of a pilot 
effort planned for August 2020, which will 
include basic components of a coaching 
program and small group training to yield 
proof of concept for MNC training and an 
evaluation of program progress. 

Awards and 
Recognition:
Congratulations to the winners of the 
2019 USNAEPS Awards, presented 
on Tuesday 25 February at the US Na-
val Aeromedical Conference (USNAC) 
Awards Luncheon. This year’s winners     
included:

CDR Jeff Grubb (above) was named the 
2019 recipient of the Michael G. Lilien-
thal Leadership Award.

LT Joe Mercado (above) was named the 
2019 recipient of the Robert S. Kennedy 
Award for Excellence in Aviation Research.

CDR (Ret) Robert Kennedy was pos-
thumously presented the Paul R. Cha-
telier Lifetime Achievement Award. This 
award was accepted by his son Dr. Rob-
bie Kennedy, pictured above.

Pictured above is LCDR Brennan Cox 
being recognized for 3 years of outstan-
ding service as AEP Assistant Specialty 
Leader.

CDR Tatana Olson (below) was the sole 
military scientist invited to present at the 
2019 SIOP Leading Edge Consortium on 

emerging technologies for selection per-
sonnel for high-risk occupations.

CDR Tatana Olson (above) was also the 
recipient of Society for Military Psy-
chology 2019 Presidential Citation for 
advancing the field of military aviation 
psychology.

LCDR Brennan Cox (above) is the 2020 
recipient of the Military Officers Asso-
ciation of America Joint Service Warfa-
re Award.  This award is given twice a 
year to an NPS military staff or faculty 
member who has contributed most sig-
nificantly to the study, implementation, 
and spirit of joint service.   
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LT Todd Seech (above) was the first O-3 
and first Naval officer to be awarded US 
Air Force Academy’s General Robert F. 
McDermott Award for Research Exce-
llence, in recognition of research focu-
sed on the development and validation 
of USAF’s Pilot Training Next Program.

LCDR Stephen Eggan (above) was quo-
ted in US Naval Institute News for his 
critical work supporting NHRC’s mission 
to enable COVID-19 fleet and clinical 
testing. Unfortunately, in the article, he 
was identified as an “Infectious Disease 
Researcher.” 

Such is the burden of the AEP...

Notable 
assignments:
CAPT Joseph Cohn serves as Division 
Chief, Research Program Administration 
at the Defense Health Agency (DHA), as 
well as Program Manager for the DHA 
Small Business Innovative Research 
(SBIR)/Small Business Technology Trans-
fer (STTR) Program.

CAPT(S) Noel Corpus is reporting to US 
Naval Attache to the Philippines for the 
Defense Intelligence Agency.

CDR Jeff Alton serves as Chief of Sta-
ff for Deputy Director of Defense Re-
search and Engineering (Research, Tech-
nology and Laboratories). He is the first 
Medical Corps or Medical Service Corps 
to hold this position.

CDR Jeff Grubb currently serves as Di-
rector for Operations, Capability Func-
tional Area Lead, and Acting Director of 
the Joint Acquisition Task Force (JATF). 
He oversaw close-out of the $120M 
TALOS project and pivoted JATF to lead 
the Hyper Enabled Operator (HEO) con-
cept, USSOCOM CDR’s number one 
S&T priority. He is the first non-SOF offi-
cer to lead a SOCOM Joint Acquisition 
Task Force.

CDR Brent Olde serves as the Military 
Director, Human Systems Engineering 
Department and Naval Air Warfare 
Center Aircraft Division (NAWCAD) 
Product Director, Program Executive 
Office (PEO) for Common Systems (CS). 
Following a reorganization at Naval Air 
Systems Command (NAVAIR), CDR Olde 
was the only officer below O6 appointed 
as a Product Director, a key coordinating 
function between NAWCAD and PEO 
(CS).

LCDR Stephen Eggan is reporting for 
duty as the Science Director for Naval 
Medical Research Unit 3 Sigonella, an 
assignment for which he was by-name 
requested.

On 14 Aug 2020, Dr. Adam Braly (pictu-
red above right) was commissioned as a 
Navy Lieutenant and the newest mem-
ber of the AEP community by presiding 
officer CDR Hank Phillips. 

LT Braly will report to Officer Develop-
ment School in Newport RI on 30 Aug 
2020 and is expected to earn his wings 
as AEP # 161 with NAMI Aeromedical 
Officer Class 2021-3 on 21 Jun 2021. 
LT Braly holds a PhD in Human Factors 
Psychology from Rice University and 
an MA in Experimental Psychology and 
Human Factors from Texas Tech Univer-
sity. Congratulations and Bravo Zulu LT 
Braly!

CDR Hank Phillips (above left), AEP Specialty 
Leader, administers the oath of office to Dr. 
Adam Braly, officially commissioning him into 
the US Navy as a student Aerospace Expe-
rimental Psychologist (SNAEP). LT Braly will 
now begin his aviation training to earn his 
wings, at which point he will become a desig-
nated Aerospace Experimental Psychologist 
(designator 2300/1844D) in the US Navy.
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TAKE YOUR PHD TO NEW HEIGHTS IN THE US NAVY 
AS AN AEROSPACE EXPERIMENTAL PSYCHOLOGIST!

AEROSPACE EXPERIMENTAL PSYCHOLOGY

1- 2- 3-HUMAN
FACTORS

TRAINING &
SIMULATION

PERSONNEL
SELECTION

We conduct research and 

analyses of naval aviation 

platforms and systems, 

using cutting edge 

human          performance 

techniques.

We evaluate and develop 

training technologies for 

all elements of aviation 

platforms that feature state-

of-the-art in virtual and 

augmented reality. 

We oversee the selection test 

battery used for identifying 

ideal candidates for naval 

aviation by predicting 

success in the training 

pipeline. 

US NAVAL AEROSPACE EXPERIMENTAL PSYCHOLOGY SOCIETY    |   EMAIL: INFO@NAVYAEP.COM     |   HTTPS://WWW.NAVYAEP.COM

US naval aviation is a fast-paced and 
dynamic domain in which you can 
immediately apply your skills and 
education while serving your 
country. 

The opportunities and benefits- from 
generous pay and allowances to 
once-in-a-lifetime experiences- are 
abundant.  

Come see how you can make a 
difference! Contact me to learn about 
our recruitment process at: 

www.navyaep.com

Commander Hank Phillips, PhD
AEP Specialty Leader

WHERE SCIENCE AND SERVICE COMBINE


